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Abstract

The Baer-Tribbia non-linear modal initialization method implies that

large-scale meteorological analyses should be confined to analysis of slow

mode fields. An idealized multi-variate optimum interpolation analysis is

shown to produce grid point results that contain only slow modes. Variational

analysis with a slow mode constraint is therefore unnecessary.



1. The Consequences for Analysis of Non-Linear Modal Initialization

F. Baer and J. Tribbia (1977) have shown how initial conditions for

a large-scale numerical model can be determined so that there is no "noise"

in forecast from this initial state. Their procedure is related to the

4
Machenhauer method (1976) but is based on a formal expansion using the

smallness of the ratio between Rossby mode frequencies and gravity mode

frequencies. (These modes are the solutions to the linearized equations

of the forecast model for perturbations on a resting basic state.) The

procedure has been given a graphical description by the "slow manifold"

diagram of Leith (1980). In figure 1, we consider the abscissa as equal

to the total squared amplitudes of the slow modes contained in a complete

three-dimensional meteorological field, and the ordinate as the corresponding

measure of the "fast" mode components. (Slow and fast would normally be

identical with Rossby and gravity, but are preferable names in that they

recognize the freedom to choose the frequency separation criterion for best

results.) The collection of all balanced states is represented by a curve

in this highly compressed diagram, a curve to which Leith has given the name

"slow manifold". This is because the Baer-Tribbia formalism assumes that in a

balanced state, the fast mode components are not arbitrary, but are determined

(i.e. forced) by the non-linear interaction of the slow modes. The atmosphere

(and model) are assumed to be located on this manifold at all instants.

The Baer-Tribbia initialization process begins with a field containing only

slow modes, such as would be obtained from a general analysis by subtracting

all fast modes. The non-linear interactions of the slow modes produce

tendencies, ( .4/0t , etc.), which, in the first Baer approximation, are

to be balanced by the linear tendencies of the unknown fast modes so that the

b ~total tendency of fast modes vanishes. This determines the first iterative



3

F2

I

-A

Ft8 .' T:e sAlow lal : le ae f :e ._ 
t*,tl~ateetr~cessf' /et4t by 4'
3r'r~~'h it 5a 'ole4 dsidgts- at A

h +A; btokns 5t9$a eI 0

Is2



solution for the fast mode amplitudes.

The process for further iterations is well-defined, and the only mathematical

problems are those of convergence of the iterations and the increasing computation

associated with each iteration (Ballish, 1980). A meteorological problem

also arises in that certain slow motions of importance involve a balance between

strong release of latent heat and the vertical motions associated with gravity

wave modes. Temperton (1980, p. 183) has suggested that the slow manifold must

therefore be displaced upward in Leith's diagram as a "non-adiabatic" slow mani-

fold to recognize this exception to the basic assumption underlying the Baer

process.

This exception will require special consideration (for example,

specification of the temperature tendency from latent heat as a known quantity)

and in this paper I assume that a satisfactory treatment of this can be achieved.

It is then possible to recognize the dependent character of the fast mode

components in an initial field and draw the following logical consequences of

the Baer initialization process:

I. The purpose of large-scale meteorological analysis is to obtain the

most accurate possible depiction of the slow mode fields.

Two further consequences result immediately.

II. Observations used in this slow mode analysis must be corrected for the

fast mode components that they contain.

III. Any statistical-dynamical guidance used in analyzing slow mode fields

must be based on the kinematic properties of only slow mode fields, not on

the properties of complete fields.

In a recent paper (1982) I have shown how procedure II can be implemented,

and the importance of doing so with respect to obtaining maximum accuracy of the

analysis in data-rich areas. This demonstration was couched in terms of the



strict constraint variational analysis method introduced by Y. Sasaki (1958).

As a useful technique, this analysis method is far removed from operational

practice, however, because it is designed to use input data located only at

grid points, and becomes extremely complex as soon as one begins to allow for

the existence of correlations between the input data errors.

The remainder of this paper proves a "theorem" that obviates the use of

a variational analysis to enforce the constraint that the analysis is to

result in an analysis of slow modes only. The theorem can be stated as

follows.

A multivariate optimum interpolation analysis will result in grid-

point values containing only slow modes if three conditions are met:

1. It is given a first guess containing only slow modes.

2. The first guess error covariances that it uses are for slow mode

errors only, and are specified by a power spectrum of slow mode

error.

3. All observations are used in the analysis for each grid-point

variable.

The theorem does not address the accuracy of the "observations" with respect

to statement II above, this point having been addressed in the previous

paper.

The theorem is first proven for a simple 1 dimensional domain.

Section 2 describes this computation space and analysis grid, together

with the mode definitions. Elementary geostrophic relations are used to

define the slow modes. The optimum interpolation method is described in

section 3, followed in section 4 by the spectral definition of the slow

mode first guess error covariance structure. The Sasaki variational method,

based on a slow mode constraint, is described in section 5. Particular

emphasis is given to the requirement to use orthogonal error vectors in
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this calculation. It is shown in this section that if the input grid-point

data for the variational process contains no fast modes the output field

will be identical to the input field. The variational process will

therefore be unnecessary if its input grid-point data contains no fast

modes. The actual proof that the idealized optimum interpolation analysis

of sections 3-4 contains no fast modes is deferred to section 6.

Section 7 provides a generalization to a typical 3-dimensional numerical

prediction model and some concluding comments. The ideas of optimum

interpolation that were originally formulated by Gandin (1963) and Eliassen

(1954), and implemented recently by Lorenc (1981), are capable of responding

completely to the theoretically based needs of modern large-scale meteorological

analysis.
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2. Analysis region and modes.

We consider a periodic x-domain, cyclically repeating over the dis-

tance ;27 . This is marked off by an even number K of grid points:

-k 1I1KIV- = at4-1)/K; (2.1)

At each grid point an analyzed field will have a "height" variable H and

a "velocity" variable V. The Fourier representation of H and V will be

defined as Al f-{

4Au co- (2.2)

in which 2
in which

(2.3)NI= </a.

x in (2.2) is a continuous variable, but the coefficients are determined

by the grid point values:

For n=O: * ..a SA .

(/0 Co) _ I -.8 i.L I ,le t - C " . (2.4)

For n=l, N:

( AC)x Al
K(/4,Y a9

For n=l, N-: K

(8,,,, D,,,)- 1 27t l y ) * (2.6)Al (2.6)

This convention is equivalent to that used in spectral transform forecast

models.

In defining modes we will use the continuous form of (2.2) so that

C Ceh /Or4 W -- w4 , etc. The principle we follow is to associate

the "slow" modes with the geostrophic-like relation

(2.5)



Slow modes: V . . (2.7)

The remaining modes, to be called "fast modes", will be orthogonal to

the slow modes. Each mode has an H component and a V component, as

listed in Table 1. The normalization factor Mn appearing in that

table is given by

fy: :a. (2.8)

Let H~, VQ denote the H and V components of mode e . Then the modes

have the orthonormality property that

H V V I 425 at- (2.9)

For n=O, the slow mode and fast mode represent, respectively, the x-averaged

H field and the x-averaged V field (i.e. the "meridional circulation").

For n=l, N-1 the fast modes satisfy -" Vi ' ; . The special choice of modes

for n=N is a simple one to resolve the vanishing of j44" w # and the

absence of BN and DN.

Table 1. Definition of modes. The factor Mn = [2/(l+n2)]1l2.

Wave Number Type H component V component

n=O: Slow 1 0

n=0: Fast 0 -1

n=l,N-l: Slow (even) Mn cos nx -nMn sin nx
Slow (odd) Mn sin nx nMn cos nx

n=l,N-l: Fast (even) nMn cos nx Mn sin nx
Fast (odd) nMn sin nx - Mn cos nx

n=N: Fast (even) a cos Nx 0

Fast (odd) 0 4r cos Nx

I



Let S and F denote the amplitude of a slow or fast mode that is

contained in a general field of the type (2.2)-(2.6). Their values are

related to the Fourier coefficients according to the scheme in Table 2.

Table 2. Relation of modal amplitudes S and F to Fourier coefficients.

Wave Number

n=0: So = Ao

Fo = -CO

n=l,N-l: Sn(even) = (1/2)Mn (An-nDn)

Sn(odd) = (1/2)Mn (Bn+nCn)

n=l,N-l: Fn(even) = (1/2)Mn (nAn+Dn)

Fn(odd) = (1/2)Mn (nBn-Cn)

n=N: FN(even) = AN/ 2

FN(odd) = CN/ 2

An immediate relation to variational methods can be noted

(Daley, 1978). Suppose An, Bn, Cn, Dn represent a "filtered" field

containing only wave numbers n=l, N-1, that is to be derived from an original

field An-Dn by eliminating all fast modes. An, Bn, Cn, and Dn

according to the recipe of Table 2 will be given by

,%^o~~~ v; ~~~~~(2.10)
This filtering process can be shown to be equivalent to the variational

problem of minimizing

f [c 8' ) (QVtj v (2.11)
0

subject to the constraint

(2.12)
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inasmuch as the differential equation resulting from (2.11) - (2.12)

has the form

H - fi " 8 r 14 V19 4¢J

(a result derived in 1958 by Sasaki.) Our concern with variational

analysis, however, will be to generalize (2.11) to allow for spatially

variable accuracies of the input data H and V in the integrand of (2.11).

This is done in section 5.

H and V have the same physical dimensions. If these are thought of

as velocities, H is equal to the perturbation geopotential in a three-

dimensional mode expansion multiplied by /L , where f is the

Coriolis parameter and L is the physical distance corresponding to the r

interval in x. The fast modes treated here for n=l, N-1 are equal to

the modes obtained by adding together the eastward and westward moving

gravity wave modes associated with each wave number. They contain geopotential

and vorticity but have zero divergence.

3. Optimum interpolation analysis

This process ("OI") arrives at an analysis by combining information

from a "first guess" forecast and from observations with respect to the

error structure of both. The procedure has been described most recently

by Lorenc (1981). For convenience in notation, let us define a grid-point

vector j of length 2K by setting

Y as & w' k4 ri Yi ,A{:sl2 (3.1)

We also define an observation vector Z of length R that represents P

height observationsp
height observations,
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(3.2)

at location Xp (not at grid points), followed by R-P wind observations

V> t 2 _ P/* I.., / Act Of He ) (3.3)

at their locations . Because of the cyclic periodicity, these identical

observations are repeated in every af' interval in x.

The OI analysis is calculated as a correction to the first guess

4~~~~
Ye ~ ~ 4() 1 , tf A- -(5 Ye (3.4)

Let 4 and l denote errors in the observation and the first

guess , and let an overbar denote an ensemble average. We shall assume

to begin with that observational errors and first guess errors are uncor-

related; 1 a . (This assumption is corrected at the end of section 6.)

Under these conditions, the coefficients 0 to minimize the ensemble squared

error in A (an) are determined by the following 2K sets of R equations

(k=l, 2K; q=l,R; p=l,R)

: t =1 t * 1 any ) Hi He ' ~~(3.5)

Thus if Opq denotes the inverse of the symmetric RxR error covariance

matrix - , lFL, we can write __ _ .

Te cg f ther g so

The change from the first guess to the OI analysis is

A. (3.7)

* : ) # A, ttat) 2 DinAJ



and is a function only of the first guess error, the observational errors,

and the location of the observations.

4. First guess errors and covariances

These are needed not only at the analysis points xk but also at the

observation points xq. To be precise about this it is necessary to

follow the same convention that was used in the mode definitions and use

the Fourier series representation (2.2) - (2.6) to generalize from grid

points to intermediate values of x.

Let (a, b, c, d)n represent the Fourier coefficients for the first

guess error in an individual realization in the ensemble. If we introduce

the first guess error notation

A. I46.H(44X3),
(4.1)

we may write, for each realization in the ensemble:

(4.2)

and

N(44 -f ofLe F ~ 
(4.3)

where the last step follows from (2.10) and the fact that the first guess

errors are errors in slow modes only.

Let ~ and denote two values of x. Equations (4.2) and (4.3)

can then be used to derive the following expressions for the error covariances

of the slow mode first guess fields.

t/p~let}) -}+H@4 t t ~t s6S§;t0^<*bqiP@#tr (4.4)#-W

:

0. f~4
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{(9de) =~HV4 t m H% rHz Vs 4i (4.5)

-~~~~4-j

'14V4 - m 14 MC(.5

#'t~~~~~~~~~~)

(4.7)
AJ-1 594t) 4 1 "(@ (HV'5j C.4$" Itto, OW M IF (.)

In these expressions the 5 dependence appears only through &OVW Y and

4olO Jr. The HHA - HVS terms depend only on and (except for HHA

and HVA) on m. They include the statistical information by means of covariances

of the Fourier coefficients of, the first guess error. HdA _ , (4.8)

A -

H VA 4 , d 4L (4.9)

#.-I

(4.10)

4ft *t -WL 4fL
0~ ~ ' _ _

_4t (4.12)

VC Jf aAF t 4 7 t,^8 (4.12)
14 VS UUJe ae )?4 41

This representation is quite general, including even systematic geographical

error represented by non-zero values of 4 and 

Formulas (4.4) - (4.13) will be used in section 6 to prove that the OI

analysis (3*0) contains only slow modes.



5. Variational analysis

In order to prove the theorem that a multivariate optimum interpolation

analysis of slow mode fields makes a variational analysis unnecessary, it is

of course necessary to describe what type of variational analysis is meant.

Suppose we have input values of the grid point variables H X V
(For our purpose and will be the OI analysis values.) We must

also know the associated error covariance matrix Eij in which i and j both

take on the values 1 through 2K. To be specific, Eij can be constructed

according to the scheme used in (3.1) for the optimum interpolation:

4j ; c y5 ye . Let 6 and v be the error in H and V

We set

/t - - - --- l - A (5.1)" tgJ} A}t t kaX/ f

' XtipixP: j' -_ ie i- iW x/ f j I- V.
As a covariance matrix, Eij will have 2K non-negative eigenvalues A

and each of these will have a 2K component eigenvector i (i=l,2K)

associated with it that is orthonormal to the other / 

The essence of the variational procedure is that introduced by Sasaki

(1958). Using input values ; , we seek to obtain analysed values 

that will minimize a positive definite functional of the form

SAS- Jz2 ~'½½~/W Q Wj (5.2)

and also obey M linear constraints*

A FA hi v {*:bM; M A4,t j (5.3)

* Sasaki stated the constraint as a differential equation. As long as this
differential equation constraint is linear, we may use Fourier series

for our cyclic x region to express the constraint in the form (5.3). See

also the discussion at the end of section 2.



The weights W in (5.2) must be positive for that expression to be

positive definite. It can readily be shown (e.g. Phillips, 1982) that

if the errors in the input data are independent - that is if Cr; S

when 2 i - then the optimum choice for W is the reciprocal of ( :

Vv ( f): - j / (%')t, (5.4)

In our case the input data is represented by the 2K values

of H , Y from the multivariate optimum interpolation analysis.

From (3.8) we have the following formula for the analysis error as

a tool to compute &~ Y 

&i _ at + <he a_ 1 fj2: g AXj (5-5)
_ .~~~~=

~ ~Ye b~ will not vanish in general for kfl The procedure

by which we can recover the desired condition (5.4) in these circumstances

is to transform the variables H and V by projecting them onto the eigen-

vectors of Eij: ](

= V (5.6)
: / Ida ~~~~ ~~4 @ 'see¢ tI ~~~~~~~~~~eA

Errors in Fi ando 0are now uncorrelated, and the squared error invit

is simply X .'Our positive definite functional
0 -~~~~I

becomes 

SA~S s ° / : Iffl#AUbf' (5.7)

The linear constraint (5.3) must now be stated. Our constraint will

be that the output field from the variational step must contain only slow

modes. This can be stated explicitly as a relation onoA. by using the slow



mode Fourier relation (2.10) as a constraint on the variational output

grid values Hk and Vk: 1

i A {^e$ Tt;4w (5.8)

We then project these onto in the manner of (5.6) for substitution

into (5.7) for . The resulting expression for SAS has 2N-l=K-l

undetermined parameters: through t and B1 through BN_1.

K-1 linear equations for these parameters will result from setting the

partial derivatives of SAS with respect to A , A , ..., BN_1 equal to

zero.

Suppose however that in the error covariance matrix Eij there is

one linear combination of variables

¢It:rl .A tA;(5.9)

that has no error. This will make one eigenvalue, (say), have

a value of zero. If there are 10 such error-free linear combinations,

10 of the eigenvalues will be zero. From the form of SAS in (5.7), the

weights A for these ei will be infinite, instructing the variational

analysis, so to speak, to leave theseo4l values equal to their input

values .

In section 6 it will be shown that the multivariate OI analysis has

the property that h (anal) has no components in the K+l fast

modes described in section 2. The same condition will apply to the errors

in the multivariate OI analysis fields Hk (anal) and Vk (anal). If these

are the input to the variational problem, there will be K+l linear combinations

like (5.9) in Eij. The upper limit L in the sum (5.7) is reduced from

2K to K-1. Since this is equal to the number of unknowns, the resulting
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variational problem has the trivial result

In other words, the variational problem has been

exactly satisfies the constraint (5.8).

6. Absence of fast mode components in the optit

Equation (3.7) shows that the analyzed field

idealized optimum interpolation is equal to the

plus a correction term:

Yis the oe t e a % Z and !

(5.10)

given input data that

mum interpolation analysis.

d (an ) from the

first guess value

6 k Ad
(6.1)

~ is the observation error at ~t , t and ~f are the first guess

error at observing points p and q and ~ is the first guess error at

the grid point corresponding to * Our fundamental assumption is that

we are analyzing only slow mode fields, so that the correction term is a

correction to the first guess slow mode fields. Thus, since the first guess

o contains only slow modes, we can prove that Y (an) contains

only slow modes by demonstrating that the correction term in (6.1) has

no projection onto any of the K+1 fast modes defined in section 2.

We consider first the case of fast modes for n1l,N-1. From Table 2

and (2.5) - (2.6) we can write the following formulas for these fast

mode amplitudes Fn: K

N [2(,t*wR)Y P (e. X (6.2)

9t1)]~~~~~~~~~4 y-reJJ4 t^y I_ (6.3)
IA:g



The reasoning in the preceding paragraph shows that these will be zero

if we also obtain zero when Hk and Vk on the rights side of (6.2) -

(6.3) are replaced by the corresponding parts for Hk and Vk of the

correction terms on the right side of (6.1). Since the k-sums of (6.2) - (6.3)

can be brought inside the p,q sums of (6.1), it is in fact only necessary

to show that sums of the type appearing on the right side of (6.2) and

(6.3) vanish if Hk and Vk in those equations are replaced by the

appropriate part of I ·

Fot I: Ah~t 5W S1 J.2P~t 4 (6.4)
"A ~A

FovV~~~~~~~~~~~~~~ ~~(6.5)

Thus, for Fn (even) to vanish, it must be shown that the k-sum (k=l,K) of

i M 4f 6 0 J By # M (6.6)

and the k-sum of

& ' 4§ 06^$^@ r t Kit(6.7)

both vanish. in (6.6) and 4 in (6.7) carry information about the

observation locations for H(obs) and V(obs). Clearly, the theorem, if

it is to be useful, must not depend on the mixture or location of obser-

vations, and this is why both Ik and Jk must vanish, and do so for any

value of 4 

~~- _
The expressions for hkhq, etc., are given by (4.4)-(4.13), if is

interpreted as ~ -)/ (, and I is interpreted as xq. The HHA - HVS

terms do not depend on k. Summation over k=l,K of (4.4)-(4.7) after multiplication

with 44tM A and sA4 tV is simplified by the summation rules that hold when

n and m range from 1,N-1. These are that the k-sums of 6,



44 , and (CAt. l4 4to4 jVanish, and that the sums of either

*f643 a Y) or (44~4o / t also vanish except for n=m, when

their sums are equal to K/2=N. For example, the k (and m) summations of

the first term in gives
K H

A id 64v3* 5 4 fag A 4, &*k (6.8)
The sum of the second term in Ik is found to be the negative of this, so

that the k-sum of Ik is zero. Similarly the k-sum of the first term in

Jk is

i 4rk4 - Aid 9885 ~(6.9)

The sum of the second Jk term is again the negative of this. This proves

that Fn (even) vanishes for n=l,N-l. A similar manipulation will show that

Fn (odd) is also zero.

Fos, according to Table 2 and equation (2.4), is proportional to

the k-sum of Vk(an). From (3.8), this will vanish if the k-sum of 5

and both vanish. This is assured by the linearity of (4.7) and

(4.6) with respect to 44nA r and C4.4t (ris replaced by xk).

The vanishing of FN (even) and FN (odd) is made obvious from Table 2

by noting that AN and CN depend on the sum of terms proportional to

&N4f , and that wave number N is missing in the first guess slow

mode error covariances given in (4.4) - (4.13).

This proves that the analysis produced by the optimum analysis

system described in section 3 will contain only slow modes if (a) it is

provided with a first guess containing only slow modes, and (b) it uses

first guess error covariances based on a proper spectral representation of

error covariances in those slow modes, and (c) every observation is used

in the analysis for each grid point.
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As a final step, it is possible to extend the analysis to include

the situation where the errors B in observations are correlated with the

first guess error O a r . In section 2 this effect is introduced

by adding the terms ( S %tto the matrix multiplying r g O ,

and by subtracting the term A from the right side. If now

represents the inverse of the new optimum interpolation matrix, the only

corrections needed to the arguments of this section can be condensed into

the requirement that the k-sums of both

S ak t2 4t f (6.10)
vanish. To investigate this, we first require that can be writ-

ten formally as A--I

;s L eves + tss Absurd #*~>(6.
~t~ t ,

:$ 5 _ 28 > ~~~~a n N r ) (6.12)

Terms such as 4^ in these equations must be assigned a precise

meaning for any realization, in order to use these equations to prove

this extension of the theorem. Let the observation q represent a measurement

of a variable Z (H or V in our model). The observation error can

be expressed as the sum of a random part and a term proportional

to the true variable

with a known value for p appropriate to this type of observation. B (true)

is also equal to (first guess) - yq (first guess error in Zq). Then

1K ML +
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Thus for the observation locations that happen to occur in one realization,

CL- tg can be expressed in principle as a valid statistical

estimate if one is willing to specify the covariances of the first guess

(H or V) itself at point q with the first guess error hk at point k.

The knowledge that this is possible is sufficient to justify our use of

the formal expressions (6.11) and (6.12).

For both Lk and Mk it is again found that the k-sum of their first

and second terms cancel. The theorem also applies therefore to the

situation of correlated observational errors and first guess errors.

7. Extension to Three Dimensions

This is a straight-forward matter because much of the notation of previous

sections can be retained. The subscript k on the grid-point data vector Yk

in (3.1) is generalized first so as to denote the complete set of dynamic

variables at all grid points. If i A denotes the number of

components" in Yk, in a typical numerical prediction model will be given

by

so -- KM X (7.1)

H and K denote the number of horizontal and vertical grid points,

respectively. The factor 3 allows for 2 horizontal velocity components and a

temperature at each grid point, while the added 1 represents a surface pressure

field.

We must generalize the modal definitions of section 2. To this end we

postulate the existence of a complete orthonormal set of eigenfunctions

4 { Ky / (~ ) _ /} K in which the vector /Y denotes not only the three

continuous space variables but also the type of variable. These allow an arbitrary

grid point field to be expressed as a sum of the eigenvectors



(7.2)

The associated continuous field is given by the same expression without the

subscript k. For convenience we can assume that the orthogonal eigenvector5

are normalized with respect to a simple grid point sum1<6 ~ ~ ~ ~~~4 
~iZ #bv tOv )b t; _ ; _(7.3)

~~~~~~r hen'ienb
The expansion coefficients are then given by

4 P (1Y(7.4)
t - 2h I2{h

The notation of section 3 for the OI analysis is general. We will only

need (3.7),

YhX} it tE t$-#1 i SS S;Xx ~(7.5)
which gives the OI analyzed values as a function of the first guess and

the error of observation and of the first guess errors i } )

Ik . We need now the first guess error covariances k . Let the set

L
be divided into two distinct sets: a "slow" set 4 _1.: 4

and a "fast" set - I e ',/ 4 . The generalization of

(4.2)-(4.3) is

1-4)~~'-

X8 A*tt (7.6)

as a spectral representation of the slow mode error in an individual realization.

We then find that
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4 Lb

(7.5) with and summing overk. Because 4 ) does

not depend on p, q, ori, 4 and the k-summation can be brought

inside the p, q, and ± sumationS , Since ' ( ~ and ~ (~ ~ are

_ A s ffs ) E go i Qt, 1

orthogonal, the resulting k-sum is zero. The extension to the general case

follows trivially from a repetition of the reasoning in section 5.
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